
LLNL-CONF-464132

Extending ALE3D, an Arbitrarily
Connected hexahedral 3D Code, to Very
Large Problem Size (U)

A. L. Nichols

December 16, 2010

NECDC 2010
Los Alamos, NM, United States
October 18, 2010 through October 22, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

UNCLASSIFIED

NECDC 2010 Proceedings UNCLASSIFIED 1

Extending ALE3D, an Arbitrarily Connected hexahedral 3D Code,
to Very Large Problem Size (U)

Albert L. Nichols, III

Lawrence Livermore National Laboratory, Livermore, California, 94551

This poster will describe the reasons, methods, issues associated with extending the
ALE3D code to run problems larger than 700 million elements. (U)

Introduction
As the number of compute units increases
on the ASC computers, the prospect of
running previously unimaginably large
problems is becoming a reality. In an
arbitrarily connected 3D finite element
code, like ALE3D, one must provide a
unique identification number for every
node, element, face, and edge. This is
required for a number of reasons,
including defining the global connectivity
array required for domain decomposition,
identifying appropriate communication
patterns after domain decomposition, and
determining the appropriate load locations
for implicit solvers, for example. In most
codes, the unique identification number is
defined as a 32-bit integer. Thus the
maximum value available is 231, or
roughly 2.1 billion. For a 3D geometry
consisting of arbitrarily connected
hexahedral elements, there are
approximately 3 faces for every element,
and 3 edges for every node. Since the
nodes and faces need id numbers, using
32-bit integers puts a hard limit on the
number of elements in a problem at
roughly 700 million.

The first solution to this problem would
be to replace 32-bit signed integers with
32-bit unsigned integers. This would
increase the maximum size of a problem
by a factor of 2. This provides some head
room, but almost certainly not one that
will last long. Another solution would be
to replace all 32-bit int declarations with
64-bit long long declarations. (long is
either a 32-bit or a 64-bit integer,
depending on the OS). The problem with

this approach is that there are only a few
arrays that actually need to extended size,
and thus this would increase the size of
the problem unnecessarily. In a future
computing environment where CPUs are
abundant but memory relatively scarce,
this is probably the wrong approach.
Based on these considerations, we have
chosen to replace only the global
identifiers with the appropriate 64-bit
integer.

The problem with this approach is finding
all the places where data that is specified
as a 32-bit integer needs to be replaced
with the 64-bit integer. that need to be
replaced. In the rest of this paper we
describe the techniques used to facilitate
this transformation, issues raised, and
issues still to be addressed.

Scope
Once one has decided that some subset of
the data needs to be upgraded from 32-bit
to 64-bit integer, one should ask how far
such a transformation should extend.
From the introduction, at least for
ALE3D, it is clear that anything
describing a global identifier for node,
element, face, and edge needs to be
upgraded. For current platforms, one can
show that 64-bit integers are not needed to
handle the local ids in a single domain. If
we have 231 nodes/elements, the memory
required to just hold the locations and
connectivity is 3 64-bit reals and 8
integers. For a problem just below the 2-
billion element level, this equates to a
memory requirement of approximately
112 GB using 32-bit integers and 176 GB

UNCLASSIFIED

UNCLASSIFIED NECDC 2010 Proceedings2

with 64-bit integers. This memory would
be required on every node of the computer
used to solve this class of problem.
Current trends in super computer design
suggest that this amount of memory per
computational unit is going unlikely for
the foreseeable future. Thus, we did not
considered migrating the local index data
to 64-bit integers.

ALE3D also supports shell, beam, and
point loads. In general, these are add-ons
to the standard 3D mesh that are
associated with surface issues. Thus, for a
several billion element problem, we
would expect on the order of a couple of
million shell elements, and even fewer
beam and point loads. Thus, we felt it was
not necessary to convert these element
types at this time.

Methodology
The first issue associated with upgrading
the global identifier is how to represent it
in the code. Also, changing the data type
of the global identifier has an impact on
several areas of the code. These include
memory management, standard I/O, and
interactions with third party libraries.

Data type
We had several requirements for this data
transformation. First, we required was that
the change of the global identifier be a
compile time choice, as not all
packages/third party libraries are capable
of handling the new data size. We defined
a compile time definition
GLOBALID_IS_64BIT that is set to 0 for
32-bit integers and 1 for 64-bit. When set
to 0, we were able to preserve all of our
test process for 32-bit integers. We could
then also add appropriate failure
statements if the user requested a feature
not supported in the 64-bit version. With
some modification of the testing process,
this allowed us to use the 64-bit version
on our standard 32-bit test suite.

Another requirement was that we wanted
mismatches in the data type to be caught
early by the compiler. This would reduce

the amount of testing required to insure
correct implementation. Our initial
concept was to define a typedef that
would be an int by default but would be a
long long int for the large problem size
builds. This works to some extent, except
that by default the C and C++ compilers
will do automatic promotion between
various types of integers. To get around
this issue, we defined a C++ globalID that
has a single data member of the
appropriate size. All type conversion
construction operators are declared
explicit to prevent incidental conversion
between 32-bit and 64-bit ints.

As part of the process of separating out
globalIDs from standard integers, several
routines that had been implemented to
handle integer data had to be duplicated to
handle globalID data instead. There were
several locations where we would convert
a global ID into a local ID using the same
data storage locations. For these
situations, we had to either keep both
local and globalID storage, or would
NULL out the pointer to the data type that
was currently not being used. The second
approach is especially useful when
making sure that the correct data type was
being accessed.

One issue that made finding errors
difficult is the existence of routines like
qsort that take a void * pointer. These
remove any type checking from the
compiler. To find these issues, we created
type specific wrappers to qsort that would
use the correct compare routine for the
data type.

Library Issues
ALE3D depends on several third party
libraries. Most of these libraries do not
require globalID information, and so were
unaffected by the transformation.

SILO: Silo is used to write our restart and
plot files. Silo already supported the long
int data type. Unfortunately, the long data
type is 32-bits on a 32-bit system, and 64-
bits on a 64-bit system. To insure

UNCLASSIFIED

NECDC 2010 Proceedings UNCLASSIFIED 3

portability of our restart files, we asked
the Silo team to add support for long long
int.

MPI: The MPI specification already
includes MPI_LONG_LONG_INT for 64-
bit integers. We defined ALE_MPI_GID
to be the appropriate MPI data type,
depending on the build type.

The matrix solution libraries FEI, from
Sandia, HYPRE, and FEMSTER, both
from LLNL, require globalIDs to properly
assign the matrix equation numbers. Since
they do not yet support 64-bit equation
numbers, we had to disable their use.
However, since we do have an internal
solver, we did propagate the changes
there. Specific down grade operators were
constructed to insure that the original API
to these routines was maintained without
having to exclude them from the compile.

Several of the external mesh decomposers
are known not to scale well with large
processor counts. The packages have not
been converted to handle 64-bit integers.

External File Formats
Most of the external files that ALE3D
interacts with do not have long long
support. Thus, data needs to be down
converted when written out to these
formats or up converted when reading
from them. The file formats include
OVERLINK, which is used to exchange
data between problem runs, SAMI, which
is used to describe the mesh, and
TrueGrid, which is also used to describe
the mesh. The restart and plot files have
been upgraded to handle long long data,
and VisIt should be able to display long
long data for global node ids.

Development Environments
One thing that can be used to make the
process of converting data types is a good
integrated development environment

(IDE). A good IDE will provide the
ability to quickly jump to compiler errors,
allowing the developer to see and fix the
issues quickly. The IDE also provides a
mechanism to jump to the prototype of a
function. This allows the developer to
duplicate an integer based routine with
one set up for globalIDs. Finally, a good
IDE makes it easy to jump to all instances
of a function, allowing them to be updated
as need before it is caught by the
compiler.

Testing
ALE3D has over 600 tests that are
required to be run before one is allowed to
update the code. In order to pass these
tests, one must achieve a bit-wise binary
comparison between the new restart file
and the baseline, with the exception of
certain designated field. Since some of the
fields are globalIDs, when run in 64 bit
mode, those fields had to be added to the
list of designated differences.

Finally, since some of the packages are
not enabled in 64 bit globalID mode, we
added a standard message to the code
output to indicate that that package was
not available and thus the problem could
not run. These conditions were not
considered a failure for the test, and so the
test suite could therefore complete with
any failures.

Acknowledgements
The author would like to thank the
members of the ALE3D group, especially
Jim Reus and Bill Arrighi for helpful
comments and advice. I would also like to
thank Mark Miller for the changes made
to the Silo package to support long long
integers. This work was performed under
the auspices of the United States
Department of Energy by the Lawrence
Livermore National Laboratory under
Contract No. DE-AC52-07NA27344

